

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours

Total Marks: 100

- Notes:
 - Attempt all Sections and Assume any missing data.
 - Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)		
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1	
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.	1	
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2	
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.	2	
Q1(e)	State Euler's Theorem on homogeneous function.	3	
Q1(f)	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$		
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4	
Q1(h)	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	4	
Q1(i)) Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point (1, 0, -1).		
Q1(j)	State Stoke's Theorem.	5	
SECT	$\mathbf{Y}_{\mathbf{ON}} \mathbf{D} = \mathbf{A}_{\mathbf{A}} \mathbf{A}_{\mathbf{N}} \mathbf{Y}_{\mathbf{T}} \mathbf{T}_{\mathbf{T}} \mathbf{D}_{\mathbf{T}} \mathbf{E}_{\mathbf{A}} \mathbf{C}_{\mathbf{A}} 1_{\mathbf{A}} 1_{\mathbf{A}} \mathbf{C}_{\mathbf{A}} 1_{\mathbf{A}} 1_{$		

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	
Q2(a)	Find the c prove that	characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, contrast $A^8 - 5A^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 10^{10} + 7A^6 - 3A^5 + 2A^5 + 2A^5$	The product A^{-1} and $I = \begin{bmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}$.	1
Q2(b)	State Roll	e's theorem and verify Rolle's theorem for the functi	on	2
	$f(x) = \frac{st}{\epsilon}$	$\frac{\ln x}{e^x}$ in $[0,\pi]$.		
Q2(c)	If u, v and	1 w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 =$	$= 0$, cubic in λ , find	3
	$\frac{\partial(u,v,w)}{\partial(x,v,z)}$.			
Q2(d)	Find the v	volume bounded by the cylinder $x^2 + y^2 = 4$ and the	plane $v + z = 4$ and	4
	z = 0.		1 2	
Q2(e)	Apply Gre	een's theorem to evaluate $\int_{C} [(2x^2 - y^2)dx + (x^2 + y^2)dx]$	$(y^2)dy$, where C is the	5
	boundary	of the area enclosed by the x-axis and the upper half	of the circle	
		$x^2 + y^2 = a^2.$		
	•			

SECT	ION-C	Attempt ANY ONE following QuestionMarks (1X10=10)	
Q3(a)	Find the v	value of k for which the system of equations $(3k - 8)x + 3y + 3z = 0$,	1
	3x + (3k)	(z-8)y+3z = 0, $3x+3y + 3z = 0$ has a non-trivial solution.	
Q3(b)		[2 1 1]	1
	Find the e	eigen values and eigen vectors of matrix $A = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix}$.	

Download all NOTES and PAPERS at StudentSuvidha.com

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	SECTION-C Attempt ANY ONE following Question Marks (1X10=10)		
Q4(a)	If $f(x) = \frac{x}{1+e^{\frac{1}{x}}}$; $x \neq 0$ and $f(0) = 0$, then show that the fundulation to the differentiable at $x = 0$.	nction is continuous	2
Q4(b)	If $y = (x \sqrt{1 + x^2})^m$, find $y_n(0)$.		2

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	Expand x^{y} in powers of $(x - 1)$ and $(y - 1)$ up to the third-evaluate $(1.1)^{1.02}$.	degree terms and hence 3	
Q5(b)	A rectangular box which is open at the top having capacity 32 dimension of the box such that the least material is required for	c.c. Find the 3 or its constructions.	

SECT	ION-C	Attempt ANY ONE following Question		Marks (1X10=10)	
Q6(a)	Change th	e order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and here	nce ev	aluate the	4
	same.	\sim			
Q6(b)	Find the p	osition of the C.G. of a semicircular lamina of radius	s, a if i	its density	4
	varies as t	he square of the distance from the diameter.		-	

SECTION C	Attempt ANV ONE fallowing Question	0_10)	
SECTION-C	Attempt ANY ONE following Question Marks (IXI	.0=10)	
Q7(a) Find the	directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, 1)$ in the direction	n of 5	
the norm	the normal to the surface $xy^2 = 3x + z^2$ where $f = 2x^3y^2z^4$.		
Q7(b) Find the	constants a , b , b that	5	
$\vec{F} = (x + $	$+2y + az)\hat{i} + (4x - 3y - 2\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational and l	hence	
find func	ction \emptyset such that $\vec{F} = \nabla \emptyset$.		
	How Contraction of the second s		